Tag Archive for: Mental Health

Largest genetic study of brain structure identifies how the brain is organised

The largest ever study of the genetics of the brain – encompassing some 36,000 brain scans – has identified more than 4,000 genetic variants linked to brain structure. The results of the NIHR Cambridge BRC-supported study, led by researchers at the University of Cambridge, are published in Nature Genetics today.

Our brains are very complex organs, with huge variety between individuals in terms of the overall volume of the brain, how it is folded and how thick these folds are. Little is known about how our genetic make-up shapes the development of the brain.

To answer this question, a team led by researchers at the Autism Research Centre, University of Cambridge, accessed MRI scans from over 32,000 adults from the UK Biobank cohort and over 4,000 children from the US-based ABCD study. From these scans, the researchers measured multiple properties of the outermost layer of the brain called the cortex. These included measures of the area and volume of the cortex as well as how the cortex is folded.

They then linked these properties, measured both across the entire cortex as well as in 180 individual regions of the cortex, to genetic information across the genome. The team identified over 4,000 genetic variants linked to brain structure.

These findings have allowed researchers to confirm and, in some cases, identify, how different properties of the brain are genetically linked to each other.

Dr Varun Warrier from the Autism Research Centre, who co-led the study, said: “One question that has interested us for a while is if the same genes that are linked to how big the cortex is – measured as both volume and area – are also linked to how the cortex is folded. By measuring these different properties of the brain and linking them to genetics, we found that different sets of genes contribute to folding and size of the cortex.”

The team also checked whether the same genes that are linked to variation in brain size in the general population overlap with genes linked to clinical conditions where head sizes are much larger or smaller than the general population, known as cephalic conditions.

Dr Richard Bethlehem, also from the Autism Research Centre and a co-lead of the study, said: “Many of the genes linked with differences in the brain sizes in the general population overlapped with genes implicated in cephalic conditions. However, we still do not know how exactly these genes lead to changes in brain size.”

Dr Warrier added: “This work shows that how our brain develops is partly genetic. Our findings can be used to understand how changes in the shape and size of the brain can lead to neurological and psychiatric conditions, potentially leading to better treatment and support for those who need it.”

This study was supported by the Wellcome Trust. It was conducted in association with the NIHR CLAHRC for Cambridgeshire and Peterborough NHS Foundation Trust, and the NIHR Cambridge Biomedical Research Centre.

  • Read the paper by Dr Varun Warrier et al, “Genetic insights into human cortical organisation and development through genome-wide analyses of 2,347 neuroimaging phenotypes” in Nature Genetics.

Brain’s ‘appetite control centre’ different in people who are overweight or living with obesity

Cambridge scientists, in research supported by the NIHR Cambridge Biomedical Research Centre, have shown that the hypothalamus, a key region of the brain involved in controlling appetite is different in the brains of people who are overweight and people with obesity when compared to people who are a healthy weight.

The researchers say their findings add further evidence to the relevance of brain structure to weight and food consumption.

Current estimations suggest that over 1.9 billion people worldwide are either overweight or obese. In the UK, according to the Office for Health Improvement & Disparities, almost two-thirds of adults are overweight or living with obesity. This increases an individual’s risk of developing a number of health problems, including type 2 diabetes, heart disease and stroke, cancer and poorer mental health.

A large number of factors influence how much we eat and the types of food we eat, including our genetics, hormone regulation, and the environment in which we live. What happens in our brains to tell us that we are hungry or full is not entirely clear, though studies have shown that the hypothalamus, a small region of the brain about the size of an almond, plays an important role.

Dr Stephanie Brown from the Department of Psychiatry and Lucy Cavendish College, University of Cambridge, said: “Although we know the hypothalamus is important for determining how much we eat, we actually have very little direct information about this brain region in living humans. That’s because it is very small and hard to make out on traditional MRI brain scans.”

The majority of evidence for the role of the hypothalamus in appetite regulation comes from animal studies. These show that there are complex interacting pathways within the hypothalamus, with different cell populations acting together to tell us when we are hungry or full.

To get around this, Dr Brown and colleagues used an algorithm developed using machine learning to analyse MRI brain scans taken from 1,351 young adults across a range of BMI scores, looking for differences in the hypothalamus when comparing individuals who are underweight, healthy weight, overweight and living with obesity.

In a study published today in Neuroimage: Clinical, the team found that the overall volume of the hypothalamus was significantly larger in the overweight and obese groups of young adults. In fact, the team found a significant relationship between volume of the hypothalamus and body-mass index (BMI).

These volume differences were most apparent in those sub-regions of the hypothalamus that control appetite through the release of hormones to balance hunger and fullness.

While the precise significance of the finding is unclear – including whether the structural changes are a cause or a consequence of the changes in body weight – one possibility is that the change relates to inflammation. Previous animal studies have shown that a high fat diet can cause inflammation of the hypothalamus, which in turn prompts insulin resistance and obesity. In mice, just three days of a fat-rich diet is enough to cause this inflammation. Other studies have shown that this inflammation can raise the threshold at which animals are full – in other words, they have to eat more food than usual to feel full.

Dr Brown, the study’s first author, added: “If what we see in mice is the case in people, then eating a high-fat diet could trigger inflammation of our appetite control centre. Over time, this would change our ability to tell when we’ve eaten enough and to how our body processes blood sugar, leading us to put on weight.”

Inflammation may explain why the hypothalamus is larger in these individuals, the team say. One suggestion is that the body reacts to inflammation by increasing the size of the brain’s specialist immune cells, known as glia.

Professor Paul Fletcher, the study’s senior author, from the Department of Psychiatry and Clare College, Cambridge, said: “The last two decades have given us important insights about appetite control and how it may be altered in obesity. Metabolic researchers at Cambridge have played a leading role in this.

“Our hope is that by taking this new approach to analysing brain scans in large datasets, we can further extend this work into humans, ultimately relating these subtle structural brain findings to changes in appetite and eating and generating a more comprehensive understanding of obesity.”

The team say more research is needed to confirm whether increased volume in the hypothalamus is a result of being overweight or whether people with larger hypothalami are predisposed to eat more in the first place. It is also possible that these two factors interact with each other causing a feedback loop.

The research was supported by the NIHR Cambridge Biomedical Research Centre, the Bernard Wolfe Health Neuroscience Fund and Wellcome, with additional funding from Alzheimer’s Research UK.

Cambridge researchers listed among world’s most influential researchers

Congratulations to our NIHR Cambridge BRC theme leads who have been named in the Clarivate listings of the ‘world’s most influential researchers’.

The researchers were selected on their exceptional research influence and highly cited research papers that rank in the top 1% by citations on the global database, Web of Science, over the last decade.  

The full list of Cambridge researchers can be found on the Clarivate website.

NameTitleAssociated theme
Professor Ed BullmoreHonorary Consultant Psychiatrist and Head of the Department of PsychiatryMental Health
Professor John DaneshProfessor of EpidemiologyPopulation and quantitative sciences
Professor Ravindra K. GuptaProfessor of Clinical MicrobiologyAntimicrobial resistance
Professor David Rowitch Developmental neuroscientist and Head of Department of Paediatrics Women’s health and paediatrics

Cambridge researchers awarded Fellow status

Congratulations to our NIHR Cambridge BRC researchers who have been elected as Fellows of the Academy of Medical Sciences.

In 2022, 60 Fellows have been elected for their contributions to biomedical and health science, the highest number elected into the academy in a single year.

The Academy of Medical Sciences aims to advance biomedical and health research and its translation into benefits to society. Fellows are selected from laboratory science, clinical academic medicine, veterinary science, dentistry, medical and nursing care, and other professions allied to medical science including ethics, social science and law.

Prof Miles Parkes

Professor Miles Parkes, director of the NIHR Cambridge BRC and one of our newly elected Fellows said: “I feel very honoured to have been elected as a fellow of the Academy of Medical Sciences and am very grateful both to the colleagues who nominated and supported my application and the many patients and collaborators across who have played a critical role in the success of our IBD research.”

Professor Fiona Gilbert - Imaging theme lead

Professor Fiona Gilbert, Imaging Lead at NIHR Cambridge BRC and newly awarded Fellow said: “Our work here on the Cambridge biomedical campus brings together clinical teams, research and patients, enabling pioneering working in so many fields of medicine and life science.”

Cambridge researchers elected as Fellows

Professor Miles Parkes, Consultant Gastroenterologist and Director, Addenbrooke’s Hospital NIHR Cambridge BRC director

Professor Fiona Gilbert, Head of the Department of Radiology, University of Cambridge and NIHR Cambridge BRC Imaging Theme Lead

Professor Sarah-Jayne Blakemore, Professor of Psychology and Cognitive Neuroscience, University of Cambridge, NIHR Cambridge BRC researcher

Professor David Savage, Professor of Molecular Metabolism, University of Cambridge NIHR Cambridge BRC researcher

Professor Rodrigo Floto, Professor of Respiratory Biology, University of Cambridge

Dr John Marioni, Senior Group Leader, University of Cambridge

Professor Susan Ozanne, Professor of Developmental Endocrinology, University of Cambridge

Professor Anna Philpott, Head of the School of Biological Sciences, University of Cambridge

Brain charts map the rapid growth and slow decline of the human brain over our lifetime

An international team of researchers has created a series of brain charts spanning our entire lifespan – from a 15 week old fetus to 100 year old adult – that show how our brains expand rapidly in early life and slowly shrink as we age.

The charts are the result of a research project spanning six continents and bringing together possibly the largest ever MRI datasets ever aggregated – almost 125,000 brain scans from over a 100 different studies. Although not currently intended for clinical use, the team hopes the charts will become a routine clinical tool similar to how standardised paediatric growth charts are used.

Growth charts have been a cornerstone of paediatric healthcare for over 200 years and are used ubiquitously in clinics to help monitor the growth and development of children in comparison to their peers. A typical growth chart might plot age on the horizontal axis versus height on the vertical axis, but rather than being a single line, it will show a range that reflects the natural variability in height,  weight or head circumference.

There are no analogous reference charts for measuring age-related changes in the human brain. The lack of tools for standardised assessment of brain development and aging is particularly relevant to the study of psychiatric disorders, where the differences between conditions and the heterogeneity within them demands instruments that can say something meaningful about a single individual in the way clinical reference charts can, and to conditions such as Alzheimer’s disease that cause degeneration of brain tissue and cognitive decline.

The study, published in Nature, is a major step towards filling this gap. Unlike paediatric growth charts, BrainChart – published on the open access site brainchart.io – covers the whole lifespan, from development in the womb through to old age, and aims to create a common language to describe the variability in brain development and maturation.

The incredible growing and shrinking brain

The brain charts have allowed the researchers to confirm – and in some cases, show for the first time – developmental milestones that have previously only been hypothesised, such as at what age the brain’s major tissue classes reach peak volume and when do specific regions of the brain reach maturity.

Dr Richard Bethlehem from the Department of Psychiatry at the University of Cambridge, one of the co-leads of the study, said: “One of the things we’ve been able to do, through a very concerted global effort, is to stitch together data across the whole life span. It’s allowed us to measure the very early, rapid changes that are happening in the brain, and the long, slow decline as we age.”

Among the key milestones observed by the team were:

  • The volume of grey matter (brain cells) increases rapidly from mid-gestation onwards, peaking just before we are six years old. It then begins to decrease slowly.
  • The volume of white matter (brain connections) also increased rapidly from mid-gestation through early childhood and peaks just before we are 29 years old.
  • The decline in white matter volume begins to accelerate after 50 years.
  • Grey matter volume in the subcortex (which controls bodily functions and basic behaviour) peaks in adolescence at 14-and-a-half years old.

Towards a clinically-useful tool

While the brain charts are already proving useful for research, in the long term, the team intend them to be used as a clinical tool. The datasets already have around 165 different diagnostic labels, meaning that researchers can see how the brain differs in conditions such as Alzheimer’s disease.

Alzheimer’s disease causes neurodegeneration and a loss of brain tissue, so people affected by the condition are likely to have reduced brain volume compared to their peers. In the same way that some healthy adults are taller than others, so there is variability in brain size – in other words, a slightly smaller brain does not necessarily indicate there is something wrong. However, as is apparent from the brain charts, while brain size decreases naturally with age, it does so much faster in Alzheimer’s patients.

Dr Bethlehem explained: “We’re still at an extremely early stage with our Brain Charts, showing that it is possible to create these tools by bringing together huge datasets. The charts are already beginning to provide interesting insights into brain development, and our ambition is that in future, as we integrate more datasets and refine the charts, they could eventually become part of routine clinical practice.

“You could imagine them being used to help evaluate patients screened for conditions such as Alzheimer’s, for example, allowing doctors to spot signs of neurodegeneration by comparing how rapidly a patient’s brain volume has changed compared to their peers.”

In addition, the team hope to make the brain charts more representative of the whole population, pointing to the need for more brain MRI data on previously under-represented socio-economic and ethnic groups.  

A huge technical feat

Dr Jakob Seidlitz from the Lifespan Brain Institute at Children’s Hospital of Philadelphia and University of Pennsylvania, another of the co-leads of the study, said: “Creating these brain charts has involved multiple technical feats and a large team of collaborators. With brain imaging data, things are a bit more complicated than just taking out a measuring tape and measuring someone’s height, or head circumference. There were significant challenges to deal with, including logistic and administrative hurdles as well as the huge methodological variability we find between brain imaging datasets.”

The team used standardised neuroimaging software to extract data from MRI scans, beginning with simple properties such as the volume of grey matter or white matter, and then expanding their work to look at finer details, such as the thickness of the cortex or the volume of specific regions of the brain. They used a framework implemented by the World Health Organization for generating growth charts to build their brain charts.

Altogether, they estimate that they have used around 2 million hours of computing time, analysing close to a petabyte of data (a petabyte is equivalent to 1,000,000,000,000,000 bytes).

“This really wouldn’t have been possible without access to the High Performance Computing clusters at Cambridge,” said Dr Seidlitz. “But we still see this as a work in progress. It’s a first pass at establishing a standardised reference chart for neuroimaging. That’s why we’ve built the website and created a large network of collaborators. We expect to consistently update the charts and build on these models as new data becomes available.”

The team have created the tool with a reference framework to allow other researchers and clinicians to adjust their own datasets, making it possible to compare them against the BrainChart population.

Dr Bethlehem explained: “The NHS does millions of brain scans every year and in most of these cases, they are assessed by radiologists or neurologists relying on their extensive expertise to judge whether there is anything clinically relevant apparent on these scans. We hope that clinicians in future will be able to compare their data against ours and produce a more comprehensive report adding additional objective and quantitative observations to their assessment.

“This should effectively allow the neurologist to answer the question ‘this area looks atypical but atypical by how much?’. As the tool is standardised, it shouldn’t matter where you have your brain scan – you should still be able to compare it.”

Together with Dr Bethlehem and Dr Seidlitz, the work was led by Cambridge researchers Dr Simon White and Professor Ed Bullmore, and by Dr Aaron Alexander-Bloch at the University of Pennsylvania. It builds on a worldwide collective endeavour over the last few decades to measure human brain structure with MRI, in many different groups of people at many different ages. The team say it would not have been possible without open access to many high quality MRI datasets, and hope their results will contribute to further openness and sharing of data and analytics for brain imaging science.

The research was supported by the British Academy, the Autism Centre of Excellence, the Medical Research Council, National Institute for Health and Care Research (NIHR), the Wellcome Trust and the NIHR Cambridge Biomedical Research Centre.

Paper Reference

Bethlehem, RAI, Seidlitz J & White, SR et al. Brain charts for the human lifespan. Nature; 6 April 2022; DOI: 10.1038/s41586-022-04554-y

Exploring how inflammation affects cognitive performance in people with depression

Research from Cambridgeshire and Peterborough NHS Foundation Trust (CPFT) and supported by the NIHR Cambridge BRC and NIHR Cambridge Clinical Research Facility, has found that inflammation may influence cognitive problems for people with depression, highlighting a new target to improve treatment.

The research team tested the cognitive performance of 80 people living with depression, and participants with evidence of inflammation had worse scores for processing speed and reaction time. Their results, reported in an international journal, will support further investigations to learn how inflammation is linked with cognitive dysfunction in depression, and how to effectively help people recover.

Lead author, CPFT consultant psychiatrist Dr Muzaffer Kaser said: “Cognitive problems are commonly experienced in depression, and new treatments targeting the immune system have potential to tackle these symptoms. Firstly, we need to better understand the link between inflammation and cognition in depression. In this exploratory study, depressed patients with high levels of inflammation markers showed poorer cognitive performance. Inflammation status may provide insights into how cognitive functions are affected in depression. The Insight Study will hopefully shed more light on how to best treat cognitive dysfunction in depression.”

The full article ‘Neurocognitive Performance in Depressed Patients with low-grade inflammation and somatic symptoms was published in Brain, Behavior, & Immunity – Health and is available online to read.

CPFT is also working with the Inflammation and Psychiatry Research Group on the Insight Study to further explore the links between inflammation and depression and find new treatments. Anyone aged 20-55 with depression and currently taking an antidepressant is invited to take part. If you would like to join, or you know someone who might be able to, please contact CPFT’s specialist Windsor Research Unit team running the study: email wru@cpft.nhs.uk or call 01223 219531.

The Insight Study lead Professor Golam Khandaker said: “The aim of this research is to generate knowledge about new causes of depression in order to develop better treatments. There is still time to take part, so please get in touch!”

The research on neurocognitive performance in depression was supported by CPFT, the University of Cambridge Department of Psychiatry and the National Institute for Health Research (NIHR), specifically NIHR Cambridge Clinical Research Facility, and NIHR Cambridge Biomedical Research Centre. The researchers received funding from a Wellcome Trust fellowship and NIHR Clinical Lectureship, the BMA Foundation, MQ: Transforming Mental Health, and the Medical Research Council UK.

Cambridge Professors receive NIHR Senior Investigator awards

Congratulations to Professor Emanuele Di Angelantonio, Professor of Clinical Epidemiology and Donor Health and Professor Tamsin Ford, Professor of Child and Adolescent Psychiatry, who have both been newly appointed as Senior Investigators for the NIHR.

Each year the NIHR invites applications into a round of open competition to decide who it awards the prestigious research roles to, based on outstanding contributions to research.

This year, 30 researchers have been newly-appointed to the NIHR Senior Investigator role, two of these have been awarded to NIHR Cambridge BRC researchers.

Professor Emanuele Di Angelantonio said: “I am honoured and proud to receive this recognition from the NIHR. The NIHR has been vital to my research into the fields of cardiovascular disease and blood donation, and I am excited to be able to contribute significantly as senior leader and ambassador.”

Professor Tamsin Ford said: “I am delighted and honoured to receive this award and looking forward to joining the NIHR academy.”

As part of the announcement, Professor Ian Wilkinson, Professor of Cardiology and Cardiovascular Disease, Professor Rebecca Fitzgerald, Professor of Gastroenterology and Hepatology, and Professor Martin White, Professor of Public Health are reappointed as Senior Investigators.

Professor Edward Bullmore, Mental Health and Psychiatry has been awarded Emeritus Senior Investigator.

Find out the full details of the 2022 award winners.

© Copyright - NIHR Cambridge Biomedical Research Centre 2025