Publication: Nature

V. Pellegrinelli, S. Rodriguez-Cuenca, C. Rouault, E. Figueroa-Juarez, H. Schilbert, S. Virtue, J. M. Moreno-Navarrete, G. Bidault, M. C. Vázquez-Borrego, A. R. Dias, B. Pucker, M. Dale, M. Campbell, S. Carobbio, Y. H. Lin, M. Vacca, J. Aron-Wisnewsky, S. Mora, M. M. Masiero, A. Emmanouilidou, S. Mukhopadhyay, G. Dougan, M. den Hoed, R. J. F. Loos, J. M. Fernández-Real, D. Chiarugi, K. Clément & A. Vidal-Puig

25 April 2022


New research shows that an enzyme produced by macrophages (immune system cells) in fat tissue plays an essential role in the loss of metabolic health in people with obesity and might serve as a biomarker to help us identify those at the highest risk of fibrosis, inflammation and insulin resistance or type 2 diabetes associated with obesity. It also identifies a potential target for drugs that might prevent or reverse metabolic disease and could throw light on a long-unexplained paradox. Read more.

View publication

Publication: New England Journal of Medicine

Julia Ware,  Janet M. Allen, Charlotte K. Boughton, Malgorzata E. Wilinska, Sara Hartnell, Ajay Thankamony, Carine de Beaufort, Ulrike Schierloh, Elke Fröhlich-Reiterer, Julia K. Mader, Thomas M. Kapellen, Birgit Rami-Merhar, Martin Tauschmann, Katrin Nagl, Sabine E. Hofer, Fiona M. Campbell, James Yong, Korey K. Hood, Julia Lawton, Stephane Roze, Judy Sibayan, Laura E. Bocchino, Craig Kollman, and Roman Hovorka

20 January 2022


In this multicenter, randomized, crossover trial, researchers recruited children 1 to 7 years of age with type 1 diabetes who were receiving insulin-pump therapy. Participants received treatment in two 16-week periods, in random order, in which the closed-loop system was compared with sensor-augmented pump therapy (control). Read the full press release.


View publication

Publication: Nature Medicine

Charlotte K. Boughton, Afroditi Tripyla, Sara Hartnell, Aideen Daly, David Herzig, Malgorzata E. Wilinska, Cecilia Czerlau, Andrew Fry, Lia Bally & Roman Hovorka 

04 August 2021


An artificial pancreas could soon help people living with type 2 diabetes and who also require kidney dialysis. Tests led by the University of Cambridge and Inselspital, University Hospital of Bern, Switzerland show that the device can help patients safely and effectively manage their blood sugar levels and reduce the risk of low blood sugar levels. Read the full press release.

View publication

Publication: Proceedings of the National Academy of Sciences (PNAS)

Irene Cimino, Hanna Kim, Y. C. Loraine Tung, Kent Pedersen, Debra Rimmington, John A. Tadross,  Sara N. Kohnke, Ana Neves-Costa, André Barros, Stephanie Joaquim, Don Bennett, Audrey Melvin, Samuel M. Lockhart,  Anthony J. Rostron, Jonathan Scott, Hui Liu,  Keith Burling, Peter Barker, Menna R. Clatworthy, E-Chiang Lee,A. John Simpson, Giles S. H. Yeo, Luís F. Moita, Kendra K. Bence, Sebastian Beck Jørgensen, Anthony P. Coll, Danna M. Breen, and Stephen O’Rahilly

30 June 2021


Researchers have described a new way that the body senses damage and activates hormones in response to stressful situations – involving the protein GDF15

View publication

Publication: Nature Medicine

Kaitlin H. Wade, Brian Y. H. Lam, Audrey Melvin, Warren Pan, Laura J. Corbin, David A. Hughes, Kara Rainbow, Jian-Hua Chen, Katie Duckett, Xiaoming Liu, Jacek Mokrosiński, Alexander Mörseburg, Sam Neaves, Alice Williamson, Chen Zhang, I. Sadaf Farooqi, Giles S. H. Yeo, Nicholas J. Timpson & Stephen O’Rahilly 

27 May 2021


Could a gene be the key why some of us carry extra fat? New research has found that one in every 340 people might carry a mutation in a single gene that makes them more likely to have a greater weight from early childhood and, by 18 years of age, they could be up to 30 pounds heavier with the excess weight likely to be mostly fat. Read the full story


View publication

Publication: The Lancet

Kathryn Beardsall, Lynn Thomson, Catherine Guy, Isabel Iglesias-Platas, Prof Mirjam M van Weissenbruch, Simon Bond, et al

9 February 2021

Hyperglycaemia and hypoglycaemia are common in preterm infants and have been associated with increased risk of mortality and morbidity. Interventions to reduce risk associated with these exposures are particularly challenging due to the infrequent measurement of blood glucose concentrations, with the potential of causing more harm instead of improving outcomes for these infants.

Continuous glucose monitoring (CGM) is widely used in adults and children with diabetes to improve glucose control, but has not been approved for use in neonates. The REACT trial aimed to evaluate the efficacy and safety of CGM in preterm infants requiring intensive care.

This international, open-label, randomised controlled trial was done in 13 neonatal intensive care units in the UK, Spain, and the Netherlands. Infants were randomly assigned (1:1) to real-time CGM or standard care (with masked CGM for comparison). The primary efficacy outcome was the proportion of time sensor glucose concentration was 2·6–10 mmol/L for the first week of life. Safety outcomes related to hypoglycaemia (glucose concentrations <2·6 mmol/L) in the first 7 days of life.

Between July 4, 2016, and Jan 27, 2019, 182 infants were enrolled, 180 of whom were randomly assigned (85 to real-time CGM, 95 to standard care). 70 infants in the real-time CGM intervention group and 85 in the standard care group had CGM data and were included in the primary analysis.

Compared with infants in the standard care group, infants managed using CGM had more time in the 2·6–10 mmol/L glucose concentration target range. More infants in the standard care group were exposed to at least one episode of sensor glucose concentration of less than 2·6 mmol/L for more than 1 h than those in the intervention group. There were no serious adverse events related to the use of the device or episodes of infection.

Real-time CGM can reduce exposure to prolonged or severe hyperglycaemia and hypoglycaemia. Further studies using CGM are required to determine optimal glucose targets, strategies to obtain them, and the potential effect on long-term health outcomes.

View publication

Publication: The Lancet: Diabetes and Endocrinology

Prof Karine Clément, MD, Prof Erica van den Akker, MD, Prof Jesús Argente, MD, Allison Bahm, MD, Prof Wendy K Chung, MD, Hillori Connors, MS, Kathleen De Waele, MD, Prof I Sadaf Farooqi, PhD, Julie Gonneau-Lejeune, MD, Gregory Gordon, MD, Katja Kohlsdorf, MD, Prof Christine Poitou, MD, Lia Puder, MD, James Swain, MD, Murray Stewart, DM, Guojun Yuan, PhD, Prof Martin Wabitsch, MD, Prof Peter Kühnen, MD

30 October 2020


In this international phase 3 study, researchers wanted to see if the drug Setmelanotide could help people whose severe obesity is caused by pro-opiomelanocortin (POMC) or leptin (LEPR) deficiency.

Melanocortin 4 Receptor (MC4R), plays a critical part in bodyweight regulation and Setmelanotide is an MC4R agonist. This trial was conducted in several countries with participants with severe obesity due to either POMC deficiency LEPR deficiency.

After approximately 1 year, eight (80%) participants in the POMC trial and five (45%) participants in the LEPR trial achieved at least 10% weight loss. Researchers found Setmelanotide to be a safe and effective treatment for people with POMC or LEPR deficiency.

This research could benefit people who find it hard to lose weight. There are ongoing trials to test whether Setmelanotide is effective in other genetic obesity syndromes.

View publication

Publication: Journal of Clinical Endocrinology & Metabolism

Katherine Lawler, Isabel Huang-Doran, Takuhiro Sonoyama, Tinh-Hai Collet, Julia M Keogh, Elana Henning, Stephen O’Rahilly, Leonardo Bottolo, I Sadaf Farooqi

11 May 2020


The hormone leptin is a key regulator of weight. Children who lack leptin (due to changes in the leptin gene) have a very large appetite and rapidly gain weight. After treatment with leptin injections, they can lose weight.

The researchers know that leptin works by reducing their appetite, but they wanted to find out if leptin can affect other metabolic processes around the body too.

They used a cutting-edge technique called metabolomics to simultaneously measure more than 600 metabolic reactions in a single blood sample taken from children and young adults before and after a short period of leptin treatment.

They found that leptin not only caused big shifts in how the body processes fats, but it affected amino acids (which make proteins), bile acids (which can act as cell signals) and steroids (involved in making hormones). These changes overlapped with the changes discovered previously in healthy adults after a period of fasting.

The research findings show that as well as affecting how much food we eat, leptin affects other aspects of our metabolism. This research paves the way for further research into leptin’s action on different cells in the human body.

View publication

Publication: Scientific Reports

T. D. Turmezei, G. M. Treece, A. H. Gee, S. Sigurdsson, H. Jonsson, T. Aspelund, V. Gudnason & K. E. S. Poole

March 2020


Hip osteoarthritis is a very common condition that will affect up to 25% of the population in their lifetime. There is no cure for this painful and debilitating disease, with the mainstay of treatment currently being surgical replacement of the joint once it has become too stiff or painful to use. Research trials trying to find effective therapies for osteoarthritis currently rely on x-ray radiograph imaging to test if there have been any meaningful changes in the structure of the joint for a new therapy, but this method suffers from being unable to detect small changes reliably and from only being able to see the joint in 2D.

We developed the joint space mapping (JSM) technique in a collaboration between the Departments of Medicine and Engineering at the University of Cambridge and have since taken it to test on patient data from the widely regarded AGES-Reykjavik patient cohort of healthy older Icelandic adults.

Our research showed that JSM can identify structurally relevant disease features related to the important outcome of joint replacement in hip osteoarthritis better than the current clinical trial 2D imaging gold standards. This means that JSM could be a significantly better way of identifying who might be at high risk from getting hip osteoarthritis, those in whom the disease might be progressing rapidly, and whether any new therapy is effective at stopping the joint destruction that ultimately leads to joint failure. These results have been achieved by using an existing and readily available clinical imaging technique to look at the hip joint in 3D.

View publication

Publication: Nature

Anthony P. Coll, Michael Chen, Stephen O’Rahilly et al

25 December 2019

Cambridge scientists have discovered that metformin causes the cells of the intestine to make large amounts of a hormone, called GDF15, and secrete it into the bloodstream.

The high blood levels of GDF15 are sensed by a highly specific area of the brain where they suppress hunger and reduce food intake. When GDF15 is blocked, metformin has no effect on body weight.

The work was undertaken in the MRC Metabolic Diseases Unit at the University of Cambridge with collaborators at NGM Biopharmaceuticals, the University of Glasgow and elsewhere.

Dr Tony Coll, a lead author, said “We usually think that drugs have to pass through the intestine to have their effects in the body. In this case, though, the cells of the intestine themselves respond to the drug to create a hormonal signal which does the work.”

Metformin has been used to treat Type 2 diabetes for over 60 years and is the world’s most commonly prescribed anti-diabetic drug. It can also prevent the onset of diabetes in those at risk, doing so by helping people to lose and keep off weight. However, how metformin reduces body weight has been a mystery.

Professor Stephen O’Rahilly said: “How metformin keeps body weight down has been a mystery. This work shows that all of this effect is down to GDF15 acting on a tiny number of cells in the brain.”

These findings are supported  by an independent study from McMaster University published in Nature Metabolism  and should stimulate research into the use of GDF15 itself as an anti-obesity agent.


View publication

Publication: J Clin Endocrinol Metab.

David Church, Luís Cardoso, Richard G Kay, Claire L Williams, Bernard Freudenthal, Catriona Clarke, Julie Harris, Myuri Moorthy, Efthmia Karra, Fiona M Gribble, Frank Reimann, Keith Burling, Alistair J K Williams, Alia Munir, T Hugh Jones, Dagmar Führer, Lars C Moeller, Mark Cohen, Bernard Khoo, David Halsall, Robert K Semple

31 July 2018

Insulin and c-peptide levels are routinely measured to monitor glucose-competence in patients, however, ocassionally the standard assays give readings well ouside the normal range. Very high readings could indicate an insulin producing tumor or exogenous insulin overdosing or in rare patients can be a result of insulin-auto antibodies.

LC-MS/MS can be a highly selective method to detect insulin and distinguishes between natural insulin and insulin drugs, making it valuable add-on to “standard” immunoassays when these give unexpected readings. It can also measure multiple analytes in a single extraction, reducing the volume of blood needed for analysis.

The superior performance of LC-MS/MS in analysing blood from insulin autoimmune syndrome patients should enable clearer diagnosis and the initiation of immunomodulatory therapy.

View publication

Publication: Kidney International

Lia Bally, Philipp Gubler, Hood Thabit, Sara Hartnell, Yue Ruan, Malgorzata E. Wilinska, Mark L. Evans, Mariam Semmo, Bruno Vogt, Anthony P. Coll, Christoph Stettler, Roman Hovorka
20 March 2019

In a post hoc analysis of a randomised controlled clinical trial, researchers compared the efficacy of fully automated closed-loop insulin delivery vs. usual care in patients undergoing hemodialysis while in hospital.
View publication

Publication: Surgery for obesity and related diseases

Roberts GP, Kay RG, Howard J, Hardwick RH, Reimann F, Gribble FM.

2 February 2018


View publication

Publication: Human Molecular Genetics

Pavlova EV, Shatunov A, Wartosch L, Moskvina AI, Nikolaeva LE, Bright NA, Tylee KL, Church HJ, Ballabio A, Luzio JP, Cox TM.

10 April 2019

View publication

Publication: Cell

Lotta LA, Mokrosiński J, Mendes de Oliveira E, Li C, Sharp SJ, Luan J, Brouwers B, Ayinampudi V, Bowker N, Kerrison N, Kaimakis V, Hoult D, Stewart ID,  Wheeler E, Day FR, Perry JRB, Langenberg C, Wareham NJ, Farooqi IS.

18 April 2019

View publication

Publication: Nature Genetics

Lotta LA, Gulati P, Day FR, Payne F, Ongen H, van de Bunt M, Gaulton KJ, Eicher JD, Sharp SJ, Luan J, De Lucia Rolfe E, Stewart ID, Wheeler E, Willems SM, Adams C, Yaghootkar H; EPIC-InterAct Consortium; Cambridge FPLD1 Consortium, Forouhi NG, Khaw KT, Johnson AD, Semple RK, Frayling T, Perry JR, Dermitzakis E,  McCarthy MI, Barroso I, Wareham NJ, Savage DB, Langenberg C, O’Rahilly S, Scott RA.

14 November 2016

View publication

Publication: Cell

van der Klaauw AA, Croizier S, Mendes de Oliveira E, Stadler LKJ, Park S, Kong Y, Banton MC, Tandon P, Hendricks AE, Keogh JM, Riley SE, Papadia S, Henning E, Bounds R, Bochukova EG, Mistry V, O’Rahilly S, Simerly RB; INTERVAL; UK10K Consortium, Minchin JEN, Barroso I, Jones EY, Bouret SG, Farooqi IS.

17 January 2019

View publication

Publication: JCI Insight

Cangul H, Liao XH, Schoenmakers E, Kero J, Barone S, Srichomkwun P, Iwayama H,Serra EG, Saglam H, Eren E, Tarim O, Nicholas AK, Zvetkova I, Anderson CA, FranklFEK, Boelaert K, Ojaniemi M, Jääskeläinen J, Patyra K, Löf C, Williams ED; UK10K Consortium, Soleimani M, Barrett T, Maher ER, Chatterjee VK, Refetoff S,Schoenmakers N

18 October 2018

View publication

Publication: The New England Journal of Medicine

Marcovecchio ML, Chiesa ST, Bond S, Daneman D, Dawson S, Donaghue KC, Jones TW, Mahmud FH, Marshall SM, Neil HAW, Dalton RN, Deanfield J, Dunger DB; AdDIT Study Group

2 November 2017

View publication

Publication: The Lancet

Tauschmann M, Thabit H, Bally L, Allen JM, Hartnell S, Wilinska ME, Ruan Y, Sibayan J, Kollman C, Cheng P, Beck RW, Acerini CL, Evans ML, Dunger DB, Elleri D, Campbell F, Bergenstal RM, Criego A, Shah VN, Leelarathna L, Hovorka R; APCam11 Consortium.

3 October 2018

View publication

Publication: Bone

Poole KE, Skingle L, Gee AH, Turmezei TD, Johannesdottir F, Blesic K, Rose C, Vindlacheruvu M, Donell S, Vaculik J, Dungl P, Horak M, Stepan JJ, Reeve J, Treece GM.

21 October 2016

View publication

Publication: Appetite

Joost Overduin, Tinh-Hai Collet, Nenad Medic, Elana Henning , Julia M. Keogh, Faye Forsyth, Cheryl Stephenson, Marja W. Kanning, Rianne M.A.J. Ruijschop, I. Sadaf Farooqi, Agatha A. van der Klaauw.

1 December 2016

View publication

Publication: Nat Comms

Agatha A. van der Klaauw, Julia M. Keogh, Elana Henning, Cheryl Stephenson, Sarah Kelway, Victoria M. Trowse, Naresh Subramanian, Stephen O’Rahilly, Paul C. Fletcher, I. Sadaf Farooqi.

4 October 2016

View publication