GABA-ergic dynamics in human frontotemporal networks confirmed by pharmaco-magnetoencephalography
Publication: Journal of Neuroscience
Natalie E. Adams, Laura E. Hughes, Holly N. Phillips, Alexander D. Shaw, Alexander G. Murley, David Nesbitt, Thomas E. Cope, W. Richard Bevan-Jones, Luca Passamonti and James B. Rowe
8 January 2020
To bridge the gap between preclinical cellular models of disease and in vivo imaging of human cognitive network dynamics, there is a pressing need for informative biophysical models. Here the researchers assessed dynamic causal models (DCM) of cortical network responses, as generative models of magnetoencephalographic observations during an auditory oddball roving paradigm in healthy adults.
They demonstrated the facility of conductance-based neural mass mean-field models, incorporating local synaptic connectivity, to investigate laminar-specific and GABAergic mechanisms of the auditory response. The neuronal model accurately recapitulated the observed magnetoencephalographic data. Using parametric empirical Bayes for optimal model inversion across both drug sessions, they identified the effect of tiagabine on GABAergic modulation of deep pyramidal and interneuronal cell populations and found a transition of the main GABAergic drug effects from auditory cortex in standard trials to prefrontal cortex in deviant trials.
The successful integration of pharmaco- magnetoencephalography with dynamic causal models of frontotemporal networks provides a potential platform on which to evaluate the effects of disease and pharmacological interventions.